
Table of Contents

1 FSCR BUSH DIGITAL SPECTROMETER JUPYTER NOTEBOOK

1.1 BDS Header Block

1.2 Importing Libraries and Notebooks

1.3 BDS Configuration Parameters

1.4 BDS File Output Names

1.5 Creating the Spectrometer Camera Object

1.6 Obtaining the Raw Image of the Spectrum

1.7 Draw Visual Aperture and Measure Emission Spectral Peaks

1.8 Display Emission Spectrum and Compare with NIST Standard values

FSCR BUSH DIGITAL SPECTROMETER
JUPYTER NOTEBOOK

BDS Header Block

BUSH DIGITAL SPECTROMETER SOFTWARE INTERACTIVE VERSION
Author - Chandru Narayan
TEMPLATE FOR FCSR STUDENTS
CN Version_12i 11/25/2019 cloned from automated version v11
#
120219 CN "Added function call to print BDS parameters"
120419 CN "Added function call to compute peaks in the spectrum wavelen
120619 CN "Added cell for bdscfg parms"
120619 CN "Added Try-Except Block for creating Camera Objects"
040424 CN "Udated code for deprecated methods"
040424 CN "Added Cloudy Sky Spectrum Standard"

#!pip install --upgrade pip
#!pip install opencv-python-headless
#!pip install peakutils

Importing Libraries and Notebooks

import import_ipynb
from IPython.core.display import Image
from IPython.core.display import display
from IPython.display import IFrame
#import PIL
from PIL import Image as pilimg
from PIL import ImageDraw as pildraw
from PIL import ImageFont as pilfont

In []:

In []:

In []:

import os, sys
import time
from datetime import datetime
import cv2
import matplotlib.pyplot as plt

class StopExecution(Exception):
 def _render_traceback_(self):
 pass

BUSH LIBRARY FUNCTIONS FOR BUSH DIGITAL SPECTROMETER SOFTWARE INTERACTIVE
Author - Chandru Narayan
TEMPLATE FOR FCSR STUDENTS
CN Version_11i 12/1/2019 cloned from automated version v11
IMPORT BDSLIB AND BDSCFG HERE
import bdslibv5

BDS Configuration Parameters

###
BUSH DIGITAL TELESCOPE SOFTWARE CONFIG SECTION
TO BE USED IN THE INTERACTIVE VERSION ONLY
FOR DETAILED DESCRIPTION OF PARMS SEE BDS CONFIG DOC
###

#
NAMING
#
source = 'cloudy'
element = 'cloudy sky'
desc = 'cloudy sky spectrum'

#
CAMERA
#
shutter = 1000000

#
CALIBRATION
#
wavelength_factor = 0.69
spectrum_angle = 0
slit_topadj = 0
slit_botadj = -0

#
PLOTS
#
samp_th = 0.05
wlen_th = 35

BDS File Output Names

In []:

In []:

First let us set the date and time and we may not have internet access
Uncomment/Edit/RUN statements below if spectroscope is not connected to th
!date -s '2024-04-08 12:46:30'
!date

#!date -s '2024-04-04 09:38:30'
#!date

STEP 1. SETUP FILE BASENAMES WITH TIMESTAMPS
setup the source or basename for files
make it indicative of the spectrum you are taking
keep it short but meaningful. Do not name "a1" etc!
#source = 'cfls'

Filenames be appended with date and time
such that they will not be overwritten
now = datetime.now()
name = source + now.strftime("%m%d%H%M%S")
raw_filename = name + "_raw"
ovl_filename = name + "_ovl"
cht_filename = name + "_cht"
tbl_filename = name + "_tbl"
par_filename = name + "_par"
pks_filename = name + "_pks"

################## STUDENT TO ADD EDITS BELOW ##############################
WRITE A STATEMENT TO PRINT THE 4 OUTPUT NAMES FROM THE BDS SOFTWARE TO FA

print(raw_filename)
print(ovl_filename)
print(cht_filename)
print(tbl_filename)
print(par_filename)
print(pks_filename)

################## STOP HERE STUDENT/INSTRUCTOR TO VALIDATE STEP 1 #########
VALIDATE THE NAMES OF FILES TO BE CREATED - DO THEY LOOK RIGHT ???

DO NOT GO FORWARD UNTIL INSTRUCTOR VALIDATES

Obtaining Image of Spectrum

STEP 2. CREATE THE CAMERA OBJECT
CAPTURE THE RAW SPECTRUM IMAGE
THIS WILL BE EXAMINED FOR ANY ADJUSTMENTS NEEDED
FOR EXAMPLE IMAGE BRIGHTNESS LIGHT LEAKAGE ETC
DISPLAY CAPTURED IMAGE

raw_jpg_filename=bdslibv5.take_image(shutter)
bdslibv5.show_image(raw_jpg_filename)

In []:

In []:

In []:

In []:

In []:

In []:

In []:

Displaying Processed Image of Spectrum with
parameters

view image and apply putty or tape inside spectroscope to prevent li
remember - image is flipped laterally from left right!
display(Image(raw_jpg_filename))
bdslibv5.display_bds_params(name,desc,shutter,slit_topadj,slit_botadj,spectr

Draw Visual Aperture and Measure Emission Spectral
Peaks

STEP 3. PROCESS THE IMAGE AND LOCATE THE SLIT (APERTURE)
READ RAW JPG FILE OBTAINED IN A PIXEL ARRAY
RECORD THE PIXEL WIDTH AND HEIGHT
NARROW THE PIXEL WINDOW FOR SLIT TOP AND BOTTOM
FOR EXAMPLE IMAGE BRIGHTNESS LIGHT LEAKAGE ETC
DISPLAY CAPTURED IMAGE

READ RAW JPG FILE OBTAINED IN A PIXEL ARRAY
im = pilimg.open(raw_jpg_filename)
pic_pixels = im.load()
record the pixel width and height
width = im.size[0]
height = im.size[1]
print("width is %d, height is %d" % (width, height))
The slit needs to be shortened in height at times due to light leak
inside spectrometer. This small adjustment can be made here.
bigger negative numbers for smaller for bottom slit
bigger positive numbers for smaller top slit
for daylight or bright spectrum we need to narrow the slit greatly.
default values are set above
Adjust and uncomment below if you need
#slit_topadj = 0
#slit_botadj = -0

call library function to find the aperture in the raw image (pixel
aperture = bdslibv5.find_aperture(pic_pixels, width, height, slit_topadj, sl
draw the aperture
draw = pildraw.Draw(im)
bdslibv5.draw_aperture(aperture, draw)

Draw scan line using the Spectrum angle
This is the angle that the camera and diffration grating makes with
The Spectrum Angle trignometric tangent of the angle the camera and
with the line of sight to the entry slit. This usually does not nee
as it manipulates where in the observation area the spectrum falls.
approximate such that pixel counter can find it
default values are set above
Adjust and uncomment below if you need
#spectrum_angle = 0.01

In []:

In []:

In []:

In []:

draw the scan lline
bdslibv5.draw_scan_line(aperture, draw, spectrum_angle)

The wavelength_factor is the variable used for calibrating the spec
the calibration spectral line matches the known standard for that e
The wavelength_factor is close to 0.90 for the 1000 lines/mm diffra
The wavelength_factor is close to 0.60 for the 500 lines/mm diffrat
default values are set above
Adjust and uncomment below if you need
#wavelength_factor = 0.9
try:
 results, max_result = bdslibv5.draw_graph(draw, pic_pixels, aperture, sp
except:
 #camera.close()
 print("Exception while creating an aperture")
 print("This run **** TERMINATED PREMATURELY **** ...")
 print("Maybe the result of misaligned light path a very dim spectrum")
 print("Adjust Light Path Alignment OR Increase Shutter parameter and try
 raise StopExecution
else:
 print("Producing graphical result");

Display actual and ideal targets for camera exposure corrections
bdslibv5.inform_user_of_exposure(max_result)

Create the spectrum image overlaid with aperture and scan line
ovl_jpg_filename = ovl_filename + ".jpg"
bdslibv5.save_image_with_overlay(im, ovl_jpg_filename)

View the Overlaid image fix parameters and rerun STEP 3 ONLY from th
display(Image(ovl_jpg_filename))
bdslibv5.display_bds_params(name,desc,shutter,slit_topadj,slit_botadj,spectr

################## STOP HERE STUDENT/INSTRUCTOR TO VALIDATE STEP 3 #########
IS THE ACTUAL EXPOSURE WITHIN THE TARGET LIMITS ??
DID A RECTANGULAR WINDOW APPEAR OVERLAID ON THE IMAGE ENCLOSING THE SPEC
IS THE SCAN LINE VISIBLE ??
IS THE SCAN LINE ALIGNED WITH THE SLIT ??
IF NOT WE HAVE TO MAKE ADJUSTMENTS BEFORE PROCEEDING
READ INSTRUCTIONS IN VARIOUS CELLS ON THIS STEP
MAKE CHANGES AND ASK FOR ME TO VALIDATE BEFORE PROCEEDING

DO NOT GO FORWARD UNTIL INSTRUCTOR VALIDATES

Display Emission Spectrum and Compare with NIST
Standard values

cht_png_filename = cht_filename + ".png"
print(cht_png_filename)

STEP 4 FINAL STEP! NORMALIZE AND CREATE/DISPLAY SPECTRUM CHART
MAKE ADJUSTMENTS AND RERUN FROM THE BEGINNING IF NEEDED

In []:

In []:

In []:

In []:

In []:

In []:

In []:

normalized_results = bdslibv5.normalize_results(results, max_result)

Create the spectrum chart overlaid with the proper wavelengths
and color map according to frequency
cht_png_filename = cht_filename + ".png"
bdslibv5.export_diagram(cht_png_filename, normalized_results)

#display(Image(cht_png_filename))
#bdslibv5.display_bds_params(name,desc,shutter,slit_topadj,slit_botadj,spect

Print the Spectral Peaks table of wavelengths
for current spectral image obtained
csv_tbl_filename = tbl_filename + ".csv"
bdslibv5.export_csv(tbl_filename, normalized_results)

Uncomment and change these thresholds if necessary if
you would like to increase or decrease the number
of Spectral peaks found

#samp_th = 0.2
#wlen_th = 10
Call function to draw the Spectral Peaks which will
Plot the peaks and return a list of Peak Wavelengths
pks_png_filename = pks_filename + ".png"
peak_wl, t1, t2 = bdslibv5.draw_spectral_line_peaks(element,csv_tbl_filename
bdslibv5.display_bds_params(name,desc,shutter,slit_topadj,slit_botadj,spectr
par_txt_filename = par_filename + ".txt"
bdslibv5.write_bds_params(par_txt_filename,name,desc,shutter,slit_topadj,sli

pattern = pilimg.open(cht_png_filename).convert('RGBA')
#txt = pilimg.new('RGBA', pattern.size, (255,255,255,0))
size = width, height = pattern.size
draw = pildraw.Draw(pattern,'RGBA')
font = pilfont.truetype('Lato-Regular.ttf', 12)
#print(size)
draw.text((0,0), desc.upper(), font=font, fill='#000')
draw.text((0,20), t1, font=font, fill='#000')
draw.text((0,40), t2, font=font, fill='#000')
#draw.text((0,100), "Hello World", (0, 0, 0, 0),font=font)
pattern.save(cht_png_filename)

bdslibv5.display(Image(cht_png_filename))
#bdslibv5.display_bds_params(name,desc,shutter,slit_topadj,slit_botadj,spect

Show sky spectrum
ref: https://en.wikipedia.org/wiki/Diffuse_sky_radiation

cfls spectrum
ref: https://www.bealecorner.org/best/measure/cf-spectrum/
ref: https://commons.wikimedia.org/wiki/File:Fluorescent_lighting_spectrum

if 'sky' in desc.lower() or 'cloud' in desc.lower() :
 bss = "blue_sky_spectrum.png"
 display(Image(bss))

In []:

In []:

In []:

In []:

In []:

In []:

 bss = "cloudysky_wiki.png"
 display(Image(bss))
elif 'cfls' in desc.lower() or 'flourescent' in desc.lower() :
 cfls1 = "cfls_standard.png"
 display(Image(cfls1))
 cfls2 = "cfls_plot.png"
 display(Image(cfls2))
 cfls3 = "cfls_table.png"
 display(Image(cfls3))

#camera.close()

################## STOP HERE STUDENT/INSTRUCTOR TO VALIDATE STEP 4 FINAL STE
CONGRATULATIONS - YOU MADE A FANCY DIGITAL SPECTROSCOPE AND MADE YOUR FIR

DID THE SPECTRAL CHART APPEAR ??
DOES THE CHART LOOK CORRECT ??
DOES IT MATCH WITH THE STANDARD FOR ELEMENTS FOUND IN THE STANDARD SPECTR
IF NOT WE WILL MAKE ADJUSTMENTS TO PARAMETERS ABOVE AS DOCUMENTED
MAKE CHANGES AND ASK FOR ME TO VALIDATE BEFORE PROCEEDING

DO NOT GO FORWARD UNTIL INSTRUCTOR VALIDATES
WHEN YOU HAVE GOOD RESULTS PRINT FROM THE "FILE->PRINT PREVIEW" FROM
THE JUPYTER NOTEBOOK AND GET THIS NOTEBOOK PRINTED FOR VALIDATION!

In []:

In []:

In []:

In []:

