LEARN
PYTHON AND
ROBOTICS
WITH
RASPBERRY Pl

BUILD AND CODE YOUR
OWN MOVING, SENSING,
THINKING ROBOTS

Adapted from book Learn
Robotics with Raspberry PI
by

MATT TIMMONS-BROWN

“The Raspberry Pi Guy”

NOTE

Raspberry Pi is not the only
platform or computer you
can build robots with, but
it is one of the easiest and
most accessible ways of
doing so!

FIGURE 1-3
A top view of the
Raspberry Pi 3
Model B+

Your First Taste of Pi

When you see your Raspberry Pi for the first time, you might find
yourself bewildered. You probably associate a normal “computer”
with a screen, keyboard, mouse, and storage—but the Raspberry Pi
is a little different.

Unbox it, and you'll find a bare-looking board with all sorts of
components sticking out of it. If you have a Pi 3 B+, it should look
exactly like Figure 1-3. Later versions might look slightly different,
but they all have the same basic features.

MICROSD
CARD SLOT

1

GPIO PINS PROCESSOR

USB PORTS

Raspherry Pi 4 Model B+
(©) Raspberry Pi 2017

5V MICRO HDMI CAMERA

ETHERNET

USB POWER CONNECTOR

4 « CHAPTER 1

NOTE

Raspberry Pi is not the only
platform or computer you
can build robots with, but
it is one of the easiest and
most accessible ways of
doing so!

FIGURE 1-3
A top view of the
Raspberry Pi 3
Model B+

If you don’t have a Raspberry Pi yet, | recommend buying a
Raspberry Pi 3 Model B+. There are sometimes new versions of the
Pi, but great care is taken to ensure that they are all backward com-
patible (meaning they work with earlier versions), so you’ll be able to
follow along with this book even if a later version has been released.

You can find a distributor for your country on the Raspberry Pi
Foundation website (https.//www.raspberrypi.org/products/).

Your First Taste of Pi

When you see your Raspberry Pi for the first time, you might find
yourself bewildered. You probably associate a normal “computer”
with a screen, keyboard, mouse, and storage—but the Raspberry Pi
is a little different.

Unbox it, and you'll find a bare-looking board with all sorts of
components sticking out of it. If you have a Pi 3 B+, it should look
exactly like Figure 1-3. Later versions might look slightly different, but
they all have the same basic features.

MICROSD
CARD SLOT

| %

GPIO PINS PROCESSOR USB PORTS

Raspherry Pi 4 Model B+
(©) Raspberry Pi 2017

5V MICRO HDMI
USB POWER

CAMERA
CONNECTOR

ETHERNET

4 « CHAPTER 1

Let’s walk through what all these components do:

USB ports There are four USB ports you can use to plug in USB
keyboards, mice, USB sticks, and other devices.

Ethernet network port This is for a wired internet connection.

HDMI port HDMI stands for High-Definition Multimedia Interface,
and this port is what you’ll use to connect your Pi to a screen like a
TV or a computer monitor.

Micro USB power jack This is where you’ll plug in the 5V of
power that every Raspberry Pi requires to work; this is the same
sort of power input as many mobile phones. It's also worth noting
that there is no power button! Your Pi will be on for as long as you
keep the power cable connected.

MicroSD card slot While most computers have some form of
built-in storage—your laptop often has a hard drive, for example—
a Raspberry Pi has no “onboard” storage. Instead, the software
your computer runs on, known as the operating system (OS), and
all of your files are stored on a microSD card, much like you might
find in a digital camera. As part of the setup process, I'll show you
how to configure a microSD card and install the OS you need for
your Pi.

Quad-Core 1.4GHz processor In the middle of your Pi you'll
see the brain of your computer. You may be wondering just how
powerful your new purchase is: is it as fast as a laptop or a desk-
top computer? The processor, coupled with the Pi's 1GB of RAM,
gives the Raspberry Pi power that’s roughly equivalent to some
smartphones. As you'll find out later, you can do a serious amount
of computing with this processor.

Camera connector Next to the HDMI port is a clip-like con-

nector labeled camera. It’s the input for the official Raspberry Pi
Camera Module—something you’ll use in this book to give your
robot the ability to seel!

GPIO pins One of the most alien features of a Raspberry Pi

are the 40 shiny metal pins found on the top edge of the board,
shown in Figure 1-4. These are called GPIO pins, which stands
for General-Purpose Input/Output. You can program these pins to
control a huge variety of electronics, components, and other parts
including LEDs, sensors, and motors (see Figure 1-5).

5 « CHAPTER 1

FIGURE 1-4
The GPIO pins

FIGURE 1-5

A selection of hardware
that you can connect to
your Raspberry Pi using
the GPIO pins

NOTE

The original Raspberry Pi 1
has only 26 GPIO pins.
They still do exactly the
same thing, but in later
Raspberry Pi models, the
Foundation was able to
squeeze on an extra 14
pins onto the board! If you
have the original model,
you can still follow the
instructions in this book,
as the first 26 pins of the
newer 40-pin Raspberry
Pis are exactly the same
and backward compatible.

These GPIO pins are the gateway to a world of physical comput-
ing. You'll be using them to wire up the electronic elements of your
robot (motors, line-following sensors, and more). I'll then guide you
through programming this new hardware so that it does your bidding!

What You'll Need

As you've noticed, your new computer is lacking in some funda-
mental features, like a screen and a keyboard. You'll need some extra
hardware to get it set up and running. Fortunately, you'll likely have
most of these lying around already.

6 « CHAPTER 1

A 5V Micro-USB power adapter This is used to power the
Raspberry Pi. Any old Android smartphone charger should be fine.
Most power adapters will list their output voltage and current, so
you just need to ensure the output voltage of the chargeris 5 V
and the output current is at least 2.5 A. There are a lot of power
adapters around that don’t meet this specification. It is quite
common to encounter mysterious faults because of one of these
supplies. If you don’t have a spare power adapter lying around,
grab an official one here: https.//www.raspberrypi.org/products/
raspberry-pi-universal-power-supply/.

A USB keyboard and mouse By default the Raspberry Pi has
no form of input, so you’ll need both a USB keyboard and mouse
in order to interface with it in the beginning. If you have a desktop
PC at home, just yank out the existing USB keyboard and mouse
and use those. If not, you can pick them up online or at any com-
puter store.

An 8GB+ microSD card As mentioned, the Raspberry Pi has no
onboard storage, so you’ll need a microSD card (or a normal SD
card if you have a first-generation Raspberry Pi) to store the OS.
These can also be picked up online or in a computer store. You'll
need at least an 8GB card—the more space, the better!

An HDMI cable This will be used to connect your Raspberry Pi
to an HDMI TV or monitor. This is a standard cable that you can
pick up online or in your local store.

A monitor or TV You will need some sort of display output for
your Raspberry Pi. Anything with an HDMI port will do, whether it’s
a computer monitor, TV, or another type of screen. Many computer
monitors have a DVI input, and you can pick up an HDMI-to-DVI
adapter or even cable.

It would also be incredibly helpful if you have access to a

desktop computer or laptop. This isn’t a necessity, but it will be an
advantage in a variety of ways. First, you'll need to prepare an SD
card with the software your Raspberry Pi will run on, which needs to
be done on another machine. Second, you'll be wirelessly connecting
to your Pi and controlling it over your local area network. This saves
you from having to keep plugging and unplugging your Pi to your
monitor, and you’ll need a separate computer for that too. By using
your Pi over your local area network, you'll only need a monitor or TV

7 « CHAPTER 1

https://www.raspberrypi.org/products/raspberry-pi-universal-power-supply/
https://www.raspberrypi.org/products/raspberry-pi-universal-power-supply/

for the initial setup process in this chapter. This shouldn’t take more
than half an hour!

If you aren’t able to access another computer, don’t fret. You
can work around this and still follow along just fine.

In later chapters of this book we’ll be using more hardware,
components, and electronics, but you don’t have to worry about
that just yet. I'll be sure to tell you everything you need before we
launch into each project.

SETTING UP YOUR RASPBERRY PI

Now that you’ve gathered all the tech, it’s time to set up your
Raspberry Pi. This can seem like a daunting task for a beginner,

but I'll walk you through it. All you have to do is set up your microSD
card, hook up your hardware, and then boot up your Pi and configure
a few settings.

If you don’t have access to another computer to follow these
next steps, you can purchase microSD cards that are preloaded with
the OS already set up. You can find these online by searching for
“preinstalled NOOBS Raspberry Pi microSD cards.”

If you do have another computer available, though, | would rec-
ommend installing the OS yourself, as it’s a handy skill to know. That
way, if anything goes wrong and you need to start afresh, you'll know
what to do. Preinstalled microSD cards are also expensive!

Installing Your Pi’s Operating System

on Windows/macOS

The operating system is the software that every modern computer
runs on, and while different operating systems can look quite similar,
they’re not all the same. You'll likely be most familiar with Windows or
macOS, but your Raspberry Pi runs Linux operating systems.

Linux is a family of free and open source operating systems with
different distributions, meaning that there are different variations of
Linux for different purposes. For Raspberry Pi, most people use the
Raspbian distribution, the operating system officially supported by
the Raspberry Pi Foundation (see Figure 1-6). Raspbian was devel-
oped and refined to run smooth as butter on your Pi, and you'll find it
has many features in common with the OS you normally use.

8 « CHAPTER 1

WHAT DOES OPEN SOURCE MEAN?

When we say software is open source, we mean that the source
code—the code that the software is built from—is available for any-
one to look at, change, and distribute. This means that programmers
around the world can contribute to the open source project and work
for the collective good of the end user. It also means Raspbian is free
to download and use. Some operating systems, like Windows, are
proprietary and require you to purchase a license key before you can
use them on your computer.

FIGURE 1-6
The Raspbian desktop
environment

Preparing Your SD Card WARNING

Before you can install Raspbian on your microSD card, you first have During the formatting pro-
to clear out anything that might already be stored on it. Even if your
card is brand new, | recommend doing this, because it can some-

cess, the storage device
you have selected will be
entirely and irreversibly

times come with stuff already on it. This process is called formatting erased. Make sure you
your microSD card. Be sure to read the warning in the sidebar before double-check that you
you format your microSD card! have selected the right
drive name so you don’t
1. Insert your microSD card into your normal computer. Some accidentally delete every-

computers have SD card or microSD card ports, but many don’t. thing from another device

If your computer doesn’t have a place you can plug in your SD
card, you'll need to use a USB SD card adapter, like the one
shown in Figure 1-7. This small device lets you plug your card
into one of the USB slots on your PC. You can find this easily
and cheaply online (just search “SD card USB adapter”) or in
your local computer store.

and lose your data.

9 « CHAPTER 1

You may have noticed the 3 in the command python3
helloworld.py. This is telling your Pi to execute the file using
Python 3, rather than Python 2. Python 3 is the newest version of
Python, and while version 2 is still used a lot, using Python 3 is the
preferred option. There’s not a lot of difference, but there are some
syntax and feature differences between them. All of the projects in
this book will use Python 3.

SUMMARY
We’ve covered a lot in this chapter! You've gotten to know your new
Raspberry Pi, set it up, and had your first taste of both the terminal
and Python programming. You're now able to access and use your
Pi remotely and understand how to do things like change preferences
and set up an SD card.

In the next chapter I'll cover the basics of electronics and
electricity, and you'll start doing some simple building in the form
of mini-projects, like flashing LEDs, and more. This will give you the
foundation of knowledge that you’ll need before we move on to mak-
ing robots!

28 - CHAPTER 1

2
ELECTRONICS
BASICS

ELECTRONICS IS THE

SCIENCE OF CONTROLLING
AND MANIPULATING ELECTRICAL
ENERGY TO DO SOMETHING
USEFUL. IT’S ABOUT MAKING
ELECTRONIC COMPONENTS
LIKE LIGHTS, SENSORS, AND
MOTORS DO EXACTLY WHAT
YOU WANT THEM TO DO.

FIGURE 2-1
A diagram of an atom

Many innovations stem from the different fields of electronics.
Most interesting for us is the branch of robotics. To make your own
robots, you’ll need to understand the basics of electronics and bend
this knowledge to your willl In this chapter, I'll give you your first taste
of electronics in the form of two projects. You'll program an LED
(light-emitting diode) to blink at regular intervals, and then wire up a
button to print a message to your terminal when it’s pressed. You'll
be blinking LEDs and controlling the physical world in no time at all!

WHAT IS ELECTRICITY?

Electricity is everywhere in our day-to-day lives: electric currents are
used to power electrical components and appliances, like the lights
in your house, your TV screen, your toaster, and the motors of a
Raspberry Pi robot. But what actually is electricity?

Electricity starts with atoms. Everything in the world is made out
of billions of tiny atoms—even you! And as you may have learned in
science class, atoms themselves are composed of three particles:
protons, neutrons, and electrons. The protons and neutrons sit
together in the center of the atom to form the atom’s nucleus, and
the electrons orbit that nucleus, as shown in Figure 2-1.

PROTON

ELECTRON

NEUTRON

Protons and electrons each have electric charge, which is a
fundamental property of matter. Protons are positively charged, and
electrons are negatively charged. Neutrons have no charge; that is,
they are neutral. You may have heard the saying “opposites attract,”
and that applies here. Because protons and electrons have opposite
charges, they are attracted to each other and stay together, forming
the atoms that make up everything around you.

Atoms come in many different arrangements called elements.
Each element is defined by the number of protons, electrons, and

30 « CHAPTER 2

neutrons each atom contains. For example, the element copper
usually has 29 protons and 35 neutrons, while gold has 79 protons
and 118 neutrons. All metals, like copper, gold, and iron, are made
out of collections of atoms all pressed up against each other. Some
of these materials are conductive, which means that, when given
energy, the electrons from one atom can move to the next atom. This
causes a flow of charge in the material, known as an electric current.
The number of electrons flowing through a point in a material at any
given second is the size of the electric current, which is measured in
amperes (A).

For an electric current to flow, there must be a complete circuit.
A circuit is a closed path, like a loop, around which an electric cur-
rent moves. The circuit must be made of conductive material for
the electricity to move through, and any gap in the circuit means the
electricity cannot flow.

The circuit needs a source of energy to “push” the electric cur-
rent around. This can be a battery, a solar panel, electrical mains, or
any number of things. Crucially, these sources provide a potential
difference, known as a voltage. A voltage simply pushes electrons
through a conductor, such as copper wire, and the strength of a
voltage is measured in volts (V).

Power sources have a positive and negative terminal. In a simple
circuit, like the one shown in Figure 2-2, the terminals of a battery
could be connected by a thick copper wire. Electrons are negatively
charged and are therefore attracted to the positive terminal of the
battery, so they travel through the circuit from the negative end to the
positive end, pushed along by the voltage.

31« CHAPTER 2

FIGURE 2-2

A circuit showing the
flow of charge around a
thick wire connected to
the positive and negative

terminals of a battery

FIGURE 2-3
Resistance reduces
the amount of current
that can flow through
a circuit.

Although the electrons flow from negative to positive, it is con-
vention to think of the current flowing from positive to negative. The
battery in this circuit has a fixed voltage. If this voltage is increased,
more electrons would be pushed around the circuit and the cur-
rent would be larger. Conversely, if this voltage is decreased, fewer
electrons would be pushed around the circuit and the current would
be smaller.

Resistance

Now that you have an understanding of circuits, we need to add
another ingredient into the mix: resistance. Resistance simply reduces
current. Outside the laboratory every material has some amount of
resistance, which is measured in ohms (). One way to think about
resistance is to imagine a water pipe. The water flowing through the
pipe is like electric current flowing through a copper wire. Imagine the
water pipe has one end higher than the other. The water at the higher
end of the pipe has more energy (potential energy) than water at the
lower end. If the pipe is level, no water will flow. If the pipe is slightly
sloping, a small flow will occur. The actual amount that flows depends
on both the difference in height of the ends above ground and how
wide the pipe is. The height difference of the pipe is like potential dif-
ference, or voltage.

Resistance, on the other hand, is like something squeezing the
pipe and affecting how wide it is: the more it is squeezed, the less
water is able to flow through it (see Figure 2-3). This translates to less
electric current flowing through the circuit.

VOLTAGE HIGHER VOLTAGE POTENTIAL
A SO CURRENT FLOWS DOWN WIRE

RESISTANCE

FLOW OF
CURRENT

32 - CHAPTER 2

Therefore, three ingredients make up an electric circuit: voltage,
current, and resistance. They all seem to be pretty closely connected,
right? You may even think that there must be a certain mathematical
connection or law relating to them—and you’d be right.

Ohm’s Law of Electricity

Ohm’s law deals with the relationship between voltage, current, and
resistance. It states that the voltage across a conductor is propor-
tional to the current running through it.

Let’s break this down to see what it means. In a circuit, voltage
is simply equal to current multiplied by resistance. We use V to stand
for voltage, / for current, and R for resistance. So, the equation for
voltage is written as follows:

V=IxR

As with any mathematical equation, you can rearrange it to work
out the equations for the other terms. For example, from Ohm’s law
we know that the current in a circuit is equal to the voltage divided
by the resistance. When you rearrange the equation for current and
resistance, you get the following equations:

/:V

R
r=Y
/

If all of this is a little confusing, don’t worry! As you make your
own circuits, it will become easier to understand. Now that we
have covered some of the basics of electricity and electronics, let’s
get making!

MAKING AN LED BLINK:
RASPBERRY Pl GPIO OUTPUT
Just as “Hello, world!” is a traditional first program, making an LED
blink is a traditional first electronics project since it very neatly dem-
onstrates using the GPIO pins as outputs. This project will be your
introduction to using your Pi's GPIO pins. Before we begin, you might
have some questions.

First, what is an LED? Short for light-emitting diode, an LED is
a component that gives off light when an electric current is passed
through it. LEDs are the modern equivalent of an old light bulb, but
they use less power, don’t get hot, and have a longer life.

33 - CHAPTER 2

NOTE

For guidance about
where to buy and source
these parts, check the
Introduction.

FIGURE 2-4

A 400-point
breadboard and a
diagram of how the
rows and columns
are connected to
each other

The Parts List

For your first foray into electronics, you're going to need a few extra
things besides the Raspberry Pi you set up previously. Here’s what
you'll need for this project:

e Abreadboard

e An LED (color of your choice)
* An appropriate resistor

e Jumper wires

Before we wire these components up, I'll explain a little more
about how they work and why you need them.

Breadboard

An electronics breadboard allows you to connect electronic compo-
nents without having to fuse them together permanently (something
that is called soldering; see “How to Solder” on page 204). This
means you can quickly prototype circuits by inserting components
into a breadboard’s holes. The space between the holes of a bread-
board is standardized (2.54 mm/0.1 inches), so all breadboard-friendly
components should fit with no trouble. Breadboards come in several
sizes with different numbers of holes (also known as points). | would
recommend a 400-point breadboard, like the one in Figure 2-4.

Rl

+VE -VE +VE -VE

N/ e\ S

/

I
i

You can see in Figure 2-4 how the rows and columns of the
breadboard are internally connected with metal strips. So, if you put
one component into a row and put something else into the same
row, for example, they will be connected in a circuit.

34 - CHAPTER 2

LEDs

LEDs come in all different shapes, sizes, and colors. Fortunately, they
are also incredibly cheap. When bought in bulk they are quite literally
pennies each. Make sure that your LED has two legs that can be
arranged to fit in your breadboard, as shown in Figure 2-5.

2

Feel free to buy an LED in any color you wish—I have gone for
blue. Make sure to check the voltage specification for the LED you
buy. You need to make sure that the voltage required to light up the

LED is less than 3.3 V. This is often referred to as the forward voltage.

You can usually find this information in the online listing for your LED.
The forward voltage of my LED is 2.5 V. The Raspberry Pi's GPIO
pins work at 3.3V, so if your LED has a forward voltage of 5V, for
example, your Pi won’t be able to light it up!

You also need to find out the forward current of your LED. The
forward current is the recommended current to run through your
component. My LED has a recommended forward current of 30 mA
(milliamps are one thousandth of an amp), which is the equivalent
of 0.03 A. If you provide less current than recommended, your LED
won’t be very bright; if you provide too much current, it might blow
up (you’ll hear a small pop when this happens). This information will
also most likely be in the LED’s internet listing or packaging. If you
aren’t sure about the specifics of your LED, don’t worry—small,
cheap ones are usually just fine for our use. If you have no informa-
tion about your LED, just assume that the forward voltage is around
2V and the forward current is about 20 mA.

Resistors

To avoid overloading our LEDs, we'll use a resistor. Every material
has resistance, but resistor components are designed specifically to
create pure resistance in circuits.

35 « CHAPTER 2

FIGURE 2-5
Ablue LED

FIGURE 2-6
A resistor

NOTE

| recommend buying a
selection of resistors, which
are normally organized into
something that looks like a
book. That way, you'll have
a resistor for every occa-
sion and won’t have to buy
them individually.

LEDs, and most components, are quite sensitive to the amount
of current that flows through them. If you were to connect an LED
directly to a battery and create a circuit without a resistor, the amount
of current that would flow through the LED could be large enough to
cause it to overheat. A resistor lowers the current through the LED to
prevent this from happening.

Resistors come in different values denoted by colored bands,
which you can see in Figure 2-6. Take a look at the resistor guide on
page 202 to learn what these bands mean and how to read them.

rd

To find out what resistor you need, you'll have to apply Ohm'’s
law! From the equation you saw earlier, you know that resistance is
equal to the voltage divided by the current, or R = V/I. In our case,
the voltage is the difference between the voltage the Pi supplies,
3.3V, and the forward voltage of the LED: it is the total source volts
minus the LED volts. For me, that is 3.3V -3V = 0.3 V. You should
use your forward voltage here instead, or 2 V if you don’t know it.

The current is the forward current of your LED. For me that is
0.03 A. Make sure that this value is in amps, not milliamps!

| can work out the value of the resistor | need to lower the
current to 0.03 A by simply calculating the following equation:
0.3/0.03 = 10. This means that | will need a resistor of approxi-
mately 10 Q. Often you won'’t be able to find a resistor value for the
specific number you’ve calculated. That’s okay: in most cases, you
can simply use the nearest valued resistor you can find. For my LED |
was lucky and had a resistor that matched the value | needed exactly.
| am using the 10 Q resistor pictured in Figure 2-6.

If you're still unsure about the forward voltage and forward
current of your LED, just err on the side of caution and fit a sensibly

36 - CHAPTER 2

large resistor of at least 100 Q) into your circuit. If the LED is too dim,
downsize the resistor until you get to a suitable level of brightness
(dim enough to not hurt your eyes is a good rule of thumb). Don’t try
to do this the other way around: you can’t unexplode an LED!

Jumper Wires

Finally, you'll need some wires to connect everything up. Specifically,
you'll need jumper wires, which are breadboard-friendly wires that
allow you to connect things to the Pi’s GPIO pins. You can see some
examples of jumper wires in Figure 2-7.

The ends of jumper wires are either male or female. A male end
(often abbreviated as M) has a wire sticking out of it that you can
insert into a breadboard’s holes. A female end (abbreviated as F)
instead has a hole into which you place a wire. | would recommend
buying a variety so that you have a jumper wire for all situations. We’'ll
be using a lot of these throughout the book! In Figure 2-7, you can
see my collection of M-M, M-F, and F-F jumper wires. For making an
LED blink, we’ll need two M-F jumper wires.

Wiring Up Your LED

Now that you've collected your parts, it's time to wire up your LED
and create your first circuit! You'll wire up your circuit as shown in
Figure 2-8, so you can use this diagram as a reference as you go
through the instructions.

37 « CHAPTER 2

FIGURE 2-7

A collection of jumper wires

FIGURE 2-8
Breadboard diagram for
wiring up an LED

RRENENBNRNNREEN
(V¥3UYD) ISD
»
r,. c
- K
—_ B3

ETHERNET

© 0000000000000 0000000000
© 0000000000000 00000000000s0
© 0000000000000 000000000000000

Depending on the breadboard you have, your circuit may look
slightly different. To make sure your connections are correct, follow
these instructions:

1. Insert the LED into the breadboard so that each leg is in a dif-
ferent row. If you put the LED’s legs into the same row, they’ll be
connected to each other, but won’t be connected to anything
else. LEDs have a positive and negative side, which you need to
align with the flow of the current. The long leg of the LED is the
positive side—called the anode. The short leg is the negative
side—the cathode. The LED bulb will usually be flat on the side
of the cathode as an extra indicator.

2. Insert one leg of your resistor into the same row on the bread-
board as your LED’s shorter leg. Putting the resistor leg in the
same row as your LED connects the two in a circuit. Connect the
other leg of the resistor to any of the other points of the board.

3. Now, with your Raspberry Pi turned off, insert the male end of one
of your M-F jumper wires into the breadboard, in the same row as
the long leg of your LED. Locate physical pin 7 on your Raspberry
Pi, also known as the GPIO/BCM 4 pin (see “Raspberry Pi GPIO
Diagram” on page 200 for an image of this), and connect the
female end of the wire to it.

38 « CHAPTER 2

THE VARIOUS NAMES OF GPIO PINS

The Raspberry Pi's GPIO pins can have several names. First, you
can refer to the pins from their physical numbers—that is, how they
are laid out. However, the processor on the Raspberry Pi does not
understand this numbering and has its own name for the GPIO
pins, sometimes referred to as the BCM numbering of the pins.

In our case, you have wired up your LED to physical pin 7: that’s
BCM pin 4! See “Raspberry Pi GPIO Diagram” on page 200 for a
diagram of the GPIO pins and some further explanation.

4. Finally, insert the male end of your other M-F jumper wire into the
row of the breadboard that contains only one leg of the resis-
tor and none of the LED'’s legs. Then connect the female end to
physical pin 6 on your Raspberry Pi. This is one of the ground
pins. You can think of ground as the negative terminal of a bat-
tery. It is just the lower side of a voltage.

Programming Your Raspberry Pi to Blink Your LED
You should now have your circuit wired up, so boot up your Rasp-
berry Pi and log in. It’s time to write a program to blink that LED!

From the terminal, navigate from the home directory into the
folder you created in Chapter 1 with the command:

Now you'll create a new file and write a Python program to con-
trol your LED. Pick whatever name you like for your file, but ensure
your filename ends with .py. I've called mine blink.py. The following
command creates a new file and opens the Nano text editor:

You'll now find yourself in a Nano text editor identical to the one
you came across in Chapter 1.

Enter the code in Listing 2-1 to instruct your LED to flash on and
off (the numbers in circles don’t actually appear in the program, but
we'll be using them for reference).

39 « CHAPTER 2

NOTE

When you power on your
Raspberry Pi, your LED
may be off, on, or even
dimly lit. Don’t worry! Your
LED is fine in any of these
states. You haven't yet
instructed the pin to be a
certain state, so your pin
isn’t quite sure what to
do yet.

LISTING 2-1 | ©® inport gpiozero

Program to blink import time

D @ 1eq - gpiozero.LED(4)

© uwhile True:
O led.on()
© time.sleep(1)
@ led.off()
@ time.sleep(1)

This eight-line Python program is easy to understand when you
look at it one line at a time, so let’s break it down.

Python is an interpreted programming language, meaning when
this code is run, your Raspberry Pi (or any other computer) will exe-
cute your program line by line, starting at the top and moving down
in a logical manner. That means the order of your code matters.

Python comes with all sorts of built-in abilities. For example, in
Chapter 1 you printed text to the terminal, a capability Python has by
default. There are hundreds of other things Python can do, but some
abilities need to be imported from external sources. For example,
Python is not able to control your Pi's GPIO pins on its own, so we
import a library called GPIO Zero @. In programming, a library is a
collection of functions a program can use. By importing a library, we
bring these functions into the current program for our own use. The
GPIO Zero library was created by the Raspberry Pi Foundation to
give programmers a simple GPIO interface in Python. Importing this
library enables your program to control your Pi's GPIO pins! Note that
it's actually called gpiozero in the programming language, though, as
we can’t include spaces in library names and the convention is to use
lowercase.

On the next line we import the time library, which allows your
Python program to control timings. For example, you'll be able to
pause the code, which will be very useful in our case!

Next, we make a variable @. In programming, variables are
names used to store information to be referenced and manipulated in
a program. They provide a way of labeling data, and they make code
simpler, easier to understand, and more efficient.

In this case, we’ve created a variable called led that references
the LED software from the GPIO Zero library. We give the LED() func-
tion the value 4 in parentheses to show that we are referring to an
LED on GPIO/BCM pin 4. When we call 1ed later in the program, the
Pi knows we mean this pin.

40 + CHAPTER 2

Then we begin a while loop), which is a conditional statement
that will keep running the code inside it until the condition is no longer
met. In simple English, we’re telling the loop: while this condition is
true, keep running the code. In this case, the condition is simply True.
The True condition will always be true and will never be false, so the
while loop will go around and around indefinitely. This is useful to us,
as we'll be able to write the code to make the LED flash once, and
the loop will take care of making the LED flash over and over again.

Within the while loop, you also come across a key structural
feature of Python: indentation. Python knows that all the code
indented by the same number of spaces belongs to the same group
of code, known as a block. The four lines following the while loop are
indented four spaces each; as long as the condition is true, the loop
will run that whole block of code.

You can create indentation in different ways. Some people use
two spaces, four spaces, or a TAB. You can use any method you like
as long as you stay consistent throughout your Python program. I'm
a TAB person myself.

At @, you switch the LED on using the command led.on().
Remember that led refers to the pin we connected the LED to and
now we're telling that pin to be “on.” The dot (.) separates the thing
we're talking about, in this case the LED, from what we’re asking it to
do, in this case be turned on. Turning on a GPIO pin is also known as
bringing that pin high, since the Raspberry Pi will apply a voltage of
3.3 V across your circuit when this line of code runs.

Next we use a sleep() statement @ to tell your program to
pause for whatever number of seconds you give to it in parentheses.
In this case, we entered a value of 1, so the program sleeps for just
1 second. After this, you switch the LED off using the command
led.off() @. Repeat the sleep() statement at @ to make the pro-
gram wait for another second before looping back around again to
the start of the while loop. This sequence of on-wait-off-wait contin-
ues indefinitely.

Once you've finished entering the code for your program, you
can exit the Nano text editor and save your work. To do this, press
cTRL-X. You will then be asked whether you would like to save the
changes you have made. Press the Y key to say yes. Nano will then
prompt you for the filename you would like to write to, which in
our case should be blink.py or the filename you entered when you
opened the Nano editor. Press ENTER to confirm the filename.

41 « CHAPTER 2

Running Your Program: Make Your LED Blink
Now that you understand how your program works, it's time to run it.
You'll follow the same process to execute your program as you did
for the helloworld.py program you created in Chapter 1. Enter the
following code into the Raspberry Pi's prompt:

Your LED should now start to blink on and off at regular intervals
(see Figure 2-9). Congratulations, you've just successfully interfaced
your Raspberry Pi with the outside world!

FIGURE 2-9

A happily blinking
LED connected to the
Raspberry Pi

To kill your program and stop the blinking LED, press cTRL-C.

just do nothing. Go back to the instructions and make sure you fol-
lowed them accurately.

If this doesn't fix your problem, check the rest of your circuit. Is
everything connected properly? Are all of the wires firmly in place?
Check that you have wired up your circuit to the correct pins of your
Pi’s GPIO port—this is an easy mistake to make!

If you’re convinced that your circuit is sound and your LED
and resistor are appropriate (as explained in the parts list), then
you may have a software issue. When you ran the program, did
it crash? Did you get an error message? You may have made an
error when copying the code from this book. Go back and check,
or grab the code files from https.//nostarch.com/raspirobots/ and
run the blink.py file from there instead.

The GPIO Zero library is included by default in all new Raspbian
releases, but if you are running an older version of Raspbian,
you may need to install the library manually. To do this, enter the
command:

pi@raspberrypi:~/robot $ sudo apt-get install python3-gpiozero
python-gpiozero

Challenge Yourself: Change the Timing

Take a look at the code you used to make your LED blink. What
would happen if you modified some of it? For example, you could
experiment by changing the timing of the sleep() statements and
seeing what different patterns you can make! Play around a bit to
see what effects your changes have.

INPUT FROM A BUTTON:

RASPBERRY Pl GPIO INPUT

Blinking an LED is the perfect first experiment for the world of
electronics and physical computing with your Raspberry Pi, but it
demonstrates only the output aspect of what the Pi's GPIO pins can
do. GPIO pins can also take input, meaning they can take data
from the outside world and react to it. In this section you'll wire a
button up to your Raspberry Pi and write a program that is triggered
when-ever that button is pressed.

NOTE

If you want to shut down
your Raspberry Pi, you
should do so safely in soft-
ware before yanking out the
power cord. To commence
a power down sequence,
use the command sudo
shutdown now. Wait a few
seconds before pulling out
the power cord. Or, choose
the shutdown option in the
main menu from the GUI if
you're using a directly con-
nected screen.

https://nostarch.com/raspirobots/

XD XX RD Kbt End

3V3 POWER 5V POWER
BCM 2 (SDA) 5V POWER
BCM 3 (SCL) GROUND
BCM 4 (GPCL KO0) BCM 14 (TXD)
GROUND BCM 15 (RXD)
BCM 17 BCM 18 (PWMD)
BCM 27 GROUND
BCM 22 BCM 23
3V3 POWER BCM 24
BCM 10 (MOSI) GROUND
BCM 9 (MISO) BCM 25
BCM 11 (SCLK) BCM 8 (CEO)
GROUND BCM 7 (CE1)
BCM 0 (ID_SD) BCM 1 (ID_SC)
BCM 5 GROUND
BCM 6 BCM 12 (PWMD)
BCM 13 (PWM1) GROUND
BCM 19 (MISO) BCM 16
BCM 26 BCM 20 (MOSI)

GROUND BCM 21 (SCLK)

X XB Korts End

The physical numbers simply correspond to the pin’s actual
physical location, starting at 1 and going all the way down to 40.
The BCM number on each pin (for example, BCM 25) is known as
the Broadcom pin number, or the GP/O number. These numbers
are used internally by your Pi’s processor, and you usually need to
use them inside GPIO Zero and other programming libraries.
Some pins have alternate functions specified in brackets; if
you want to learn more about these, see the official
documentation on the Raspberry Pi website (https.//
www.raspberrypi.org/documentation/usage/gpio/).

“lijaammn
- s EaE CE
- . LR - - .
- = LR - s L
sn|llsmanmean mEmmag [®
== L R s
== - LI L
LR - =

= LR -u
L AR 10 |&=
. LE R NN s
. LR s
L -

+

&

~

~

— % %2 % 3 % W T EE NN EEEEEEEEEEEEEEEEEEEEEOGSNDSEEEEEEEEEEEEEEEEEE
w
=1
R RN
“amEw

w
&

LR

LN

IS
S

RN

LI

&
&

R EE N
@

4% 3 2% % W TN EETEEEEEEESEEEEEEEEEEENEEENEEEEEEEEEEEEEEEE

~ s @ % m 8 a3 @ %W E W WA EEEEEEEEEEESEEEEEEEENENEEENEENEEEEESEEEEEEE

.-w
mwm g
g
s - - -
adl smms g <
a3l sSx== - -
el puasas B I
- | i - -
- =
. - - +
" abcde m 9°h 1 I
Bread Board

my

Resistor

Button

LED

XD XX RD Kbt End

3V3 POWER

BCM 2 (SDA)

BCM 3 (SCL)

BCM 4 (GPCL K0)

GROUND

BCM 17

BCM 27

BCM 22

3V3 POWER

BCM 10 (MOSI)

BCM 9 (MISO)

BCM 11 (SCLK)

GROUND

BCM 0 (ID_SD)

BCM 5

BCM 6

BCM 13 (PWM1)

BCM 19 (MISO)

BCM 26

GROUND

XXB Korts End

5V POWER

5V POWER

GROUND

BCM 14 (TXD)

BCM 15 (RXD)

BCM 18 (PWMD)

GROUND

BCM 23

BCM 24

GROUND

BCM 25

BCM 8 (CE0)

BCM 7 (CE1)

BCM 1 (ID_SC)

GROUND

BCM 12 (PWMD)

GROUND

BCM 16

BCM 20 (MOSI)

BCM 21 (SCLK)

- Ema. - o.
5E M e E L
- A - ...
" L)
e EER -
LN - ..
10 « = = = -
L LI
- e eEw LI
LR] LI
- Ew -
58 = @ = m - s sn
L -
L] LI
LI L
L LI
0m m mEm -
LI LI
LI B LI
LI LI
LI LI
e mEEE RN}
L L
LI O LI
L) " EEE
"EEEEE EERB
HLE RN EEEE
[] E = E=
L A " EE S
" EEEE "-wEE
"= EEEn " EEE
35 m mmE LI
- L
L -
LB L
L -
40 = m omw -
LR RN "-EEw
- -
LR] -
RN "-EaEaw
A LER [
LR -
RN -
- wEn [
= L
GgoM m W m w -
(RN -
T] -
LR L
] L
55...'. -EEnw
|Esess - .Es
sE=EaEm L AN
- =-mmw
-mEa- - -
80..-'- LR
"= -
amEs» L A
L] -
abcdelfghi

i
=

=

- .
- -
mg ™
- -
. =
-

- -
w10 | =
- =
el «
- =
=

15 | =
- -
- L
. -
- -
"7

B kS
E3 L
- -
- T
. |
L]

- L]
L] L
=]
=3 -
= -
=

- 15
B ¥
LKL
B3 -
- 1
Ll

el L3
"4 L
L] L
- L3
Rl .
Ll

l45 -
- -
- L
- .
- -
W50

- L]
- -
- -
- -
l55 -
-

- -
- L
- -
meo =
- -
-

E

cnarayan
Highlight

XD XX RD Kbt End

o
LI
LB I A

3V3 POWER 5V POWER

3

BCM 2 (SDA) 5V POWER

BCM 3 (SCL) GROUND

[15m

&

BCM 4 (GPCL K0) BCM 14 (TXD)

GROUND BCM 15 (RXD)

~

BCM 17 BCM 18 (PWMD)

BCM 27 GROUND

~

BCM 22 BCM 23

3V3 POWER BCM 24

BCM 10 (MOSI) GROUND

BCM 9 (MISO) BCM 25

-
B
L]
4
-
-
-
-
-
-
-
-
L]
-
L]
[l
-
-
-
-
Ll
=
=
L]
-
o
o
-
o
°
-
-

Y
©
&
LR
LR

BCM 11 (SCLK) BCM 8 (CEO)

GROUND BCM 7 (CE1)

BCM 0 (ID_SD) BCM 1 (ID_SC)

BCM 5 GROUND

BCM 6 BCM 12 (PWMD)

BCM 13 (PWM1) GROUND 0ol

BCM 19 (MISO) BCM 16

BCM 26 BCM 20 (MOSI)

wom| o

- m| g

3

llllllllv‘lllllll *
S %% 4 W W w WA E AW EEEEEEEAEEEEEEEEEEEEEEENEESEESEESEESEEEEEER

a4 % @ % %@ N W W EEEEEEEEEEEIAEEEEEEEEEEEEESSEEEEEESSEEEENEEERE

T % % W m %W W WA E 2N ETEEEEEEESEEEEEEEEEEEEAANNAS S S NSNS R

® %2 43328 ddEsTIEEESESIEEIEEEEEE

~ S @3 a @ a4 EEEEETAEEEEE

&
o

	Blank Page
	Blank Page
	Blank Page
	Blank Page

